Do \(x,y>0\) nên \(x^3+y^3>x^3-y^3\)
Ta có:
\(x-y=x^3+y^3>x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow1>x^2+xy+y^2>x^2+y^2\) ( cũng do \(x,y>0\) )
=> đpcm.
Do \(x,y>0\) nên \(x^3+y^3>x^3-y^3\)
Ta có:
\(x-y=x^3+y^3>x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow1>x^2+xy+y^2>x^2+y^2\) ( cũng do \(x,y>0\) )
=> đpcm.
Cho 2 số thực a, b thỏa mãn xy + \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=1\)
CMR: \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge4\)
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
Cho x, y là các số thực dương thỏa mãn: \(x^3+y^3-6.\left(x^2+y^2\right)+13.\left(x+y\right)-20=0\). Tính giá trị của: \(A=x^3+y^3+12xy\)
Cho x, y, z >0 thỏa mãn x + y + z= xyz
CMR: \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\le\dfrac{\sqrt{3}}{2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
cho x,y>0 thỏa mãn \(x+y\le1\). tìm GTNN của \(T=\left(1+x+\dfrac{1}{x}\right)^3+\left(1+y+\dfrac{1}{y}\right)^3\)
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn : \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1