Đặt \(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left(x;y\right)=\left(a+1;b+1\right)\)
\(VT=\dfrac{\left(a+1\right)^3+\left(b+1\right)^3-\left(a+1\right)^2-\left(b+1\right)^2}{ab}=\dfrac{a^3+a+b^3+b+2\left(a^2+b^2\right)}{ab}\)
\(VT\ge\dfrac{2a^2+2b^2+2\left(a^2+b^2\right)}{ab}=\dfrac{4\left(a^2+b^2\right)}{ab}\ge\dfrac{8ab}{ab}=8\)