Ôn thi vào 10

VN

Cho x > 1, y > 1. Chứng minh rằng : \(\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)  ≥ 8

NL
14 tháng 9 2021 lúc 14:38

Đặt \(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left(x;y\right)=\left(a+1;b+1\right)\)

\(VT=\dfrac{\left(a+1\right)^3+\left(b+1\right)^3-\left(a+1\right)^2-\left(b+1\right)^2}{ab}=\dfrac{a^3+a+b^3+b+2\left(a^2+b^2\right)}{ab}\)

\(VT\ge\dfrac{2a^2+2b^2+2\left(a^2+b^2\right)}{ab}=\dfrac{4\left(a^2+b^2\right)}{ab}\ge\dfrac{8ab}{ab}=8\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
DL
Xem chi tiết
LB
Xem chi tiết
AP
Xem chi tiết
PP
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết