Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi E là điểm trên cung nhỏ AB. Gọi H,K,P,Q lầ lượt là hình chiếu vuông góc của B lên AC, CD,AE, DE. Gọi M,N lần lượt là trung điểm của AD, HK. Chứng minh rằng AD, PQ,HK đồng quy.
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Cho tam giác ABC nhọn. Đường tròn (I;r) nội tiếp tam giác, tiếp xúc với các cạnh BA, CA, AB lần lượt tại các điểm D, E, F. Hình chiếu của các điểm B, C, D trên EF lần lượt là X, Y, K. a) CMR: BD.KC=BK.CD b) Gọi G là điểm nằm trên cung nhỏ EF của đường tròn (I). Tiếp tuyến tại G của đường tròn (I) cắt AB, AC tại T, J. Tìm vị trí của G cung nhỏ EF để diện tích tam giác ATJ đạt giá trị lớn nhất. c) Gọi H là trực tâm của tam giác ABC. CMR: IKD=HKD Chỉ được dùng kiến thức hk1 lớp 9. Giúp tớ với ạ! Mai tớ phải nộp rùii
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
cho hình tròn tâm o bán kính R có đường kính AB dây CD vuông góc AB tại H gọi I,K lần lượt là chân các đg vuông góc kẻ từ H đến AC,BC
A/CM tg ACD cân , tứ giác ACOD là hình thoi
B/tính AC theo R khi H là trung điểm của OA
Cho tam giác ABC vuông tại A, đường cao AH.D là hình chiếu của H trên AB,E là hình chiếu của H trên AC.CMR:\(\dfrac{S.DEIK}{S.ABC}\)=\(\dfrac{1}{2}\) với I,K lần lượt là trung điểm của HC và HB
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .