Chương II - Đường tròn

H24

Cho tam giác ABC vuông tại A, đường cao AH.D là hình chiếu của H trên AB,E là hình chiếu của H trên AC.CMR:\(\dfrac{S.DEIK}{S.ABC}\)=\(\dfrac{1}{2}\) với I,K lần lượt là trung điểm của HC và HB

NT
11 tháng 10 2023 lúc 22:41

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔHDB vuông tại D có DK là trung tuyến

nên KH=KB=KD

ΔHEC vuông tại E có EI là trung tuyến

nên EI=IH=IC

\(\widehat{IED}=\widehat{IEH}+\widehat{DEH}\)

\(=\widehat{IHE}+\widehat{DAH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>IE vuông góc ED(1)

\(\widehat{KDE}=\widehat{KDH}+\widehat{EDH}\)

\(=\widehat{KHD}+\widehat{EAH}=\widehat{HAC}+\widehat{HCA}=90^0\)

=>KD vuông góc DE(2)

Từ (1), (2) suy ra DKIE là hình thang vuông

\(S_{DKIE}=\dfrac{1}{2}\left(DK+EI\right)\cdot ED\)

\(=\dfrac{1}{2}\cdot AH\cdot\left(\dfrac{1}{2}HC+\dfrac{1}{2}HB\right)\)

\(=\dfrac{1}{4}\cdot AH\cdot BC\)

=>\(\dfrac{S_{DKIE}}{S_{ABC}}=\dfrac{1}{4}:\dfrac{1}{2}=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TN
Xem chi tiết
GN
Xem chi tiết
2H
Xem chi tiết
TN
Xem chi tiết
GA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết