Bài 1: Vectơ trong không gian

JE

Cho tứ diện đều ABCD có cạnh a. Gọi M, N lần lượt là trung điểm của AB, CD. Tính độ dài đoạn MN theo a

AH
28 tháng 1 2021 lúc 23:44

Lời giải:Tam giác $BCD, ACD$ đều và $N$ là trung điểm $CD$ nên dễ dàng tính được $AN=BN=\frac{\sqrt{3}a}{2}$

$\Rightarrow \triangle ABN$ là tam giác cân tại $N$

Do đó đường trung tuyến $NM$ đồng thời là đường cao. 

Áp dụng định lý Pitago:

$MN=\sqrt{BN^2-BM^2}=\sqrt{BN^2-(\frac{AB}{2})^2}$

\(=\sqrt{(\frac{\sqrt{3}a}{2})^2-(\frac{a}{2})^2}=\frac{\sqrt{2}}{2}a\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
MA
Xem chi tiết