Hai tam giác cân ABC và DBC nằm trong hai mặt phẳng khác nhau có chung cạnh đáy BC tạo nên tứ diện ABCD. Gọi I là trung điểm của cạnh BC
a) Chứng minh \(BC\perp AD\)
b) Gọi AH là đường cao của tam giác ADI
Chứng minh rằng AH vuông góc với mặt phẳng (BCD)
Cho tứ diện ABCD có DA ⊥ (ABC), tam giác ABC cân tại A với AB=AC=a; BC=\(\dfrac{6a}{5}\). Gọi M là trung điểm của BC, kẻ AH ⊥ MD, với H thuộc MD.
a) Chứng minh rằng AH ⊥ (BCD)
b) Cho AD=\(\dfrac{4a}{5}\) Tính góc giữa hai đường thẳng AC và DM.
c) Gọi G1 ; G2 là trọng tâm các tam giác ABC và DBC. Chứng minh rằng G1G2 ⊥ (ABC).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,AB=a√3 , cạnh bên SA vuông góc với mặt đáy , SA = a√3/2 , M là trung điểm của BC. a. Chứng minh BC vuông góc với (SAM) B. Tính góc giữa đường thẳng SM và mặt phẳng (ABC)
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi H là trực tâm của tam giác ABC và biết rằng A'H vuông góc với mặt phẳng (ABC). Chứng minh rằng :
a) \(AA'\perp BC\) và \(AA'\perp B'C'\)
b) Gọi MM' là giao tuyến của mặt phẳng (AHA') với mặt bên BCC'B', trong đó \(M\in BC,M'\in B'C'\). Chứng minh rằng tứ giác BCC'B' là hình chữ nhật và MM' là đường cao của hình chữ nhật đó ?
Cho hình chóp S.ABCD có đáy ABC là tam giác đều cạnh a, tam giác SBC vuông cân đỉnh S. Gọi I là trung điểm cạnh BC.
a. Chứng minh BC vuông góc với SA.
b. Cho biết SA > AI và góc IAS bằng 30 độ. Chứng minh rằng SI vuông góc với IA.
Cho hình chóp S.ABC có đáy là tam giác vuông góc với B và SA vuông góc với đáy, AE,À lần lượt là các đường cao trong tâm giá SAB,SAC. a, Chứng minh BC vuông góc với mặt phẳng SAB. b,Chứng minh AE vuông góc với mặt phẳng SBC c,Chứng minh SC vuông góc với mặt phẳng AEF
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC). Gọi D là điểm đối xứng của điểm B qua trung điểm O của cạnh AC. Chứng minh rằng \(CD\perp CA,CD\perp\left(SCA\right)\) ?
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và SA = SB = SC = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng :
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)