Bài 3: Ôn tập chương Mặt nón, mặt trụ, mặt cầu

SK

Cho tứ diện ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD)

a) Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH

b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH

BT
1 tháng 4 2017 lúc 15:59

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

a,+) Từ A vẽ AH _|_ (BCD) (theo giả thiết AB = AC = AD)

Nên \(\Delta ABH=\Delta ACH=\Delta ADH\)

=> HB = HC = HD

Vậy H là tâm đường tròn ngoại tiếp tam giác BCD

+) Ta có: \(AH=\sqrt{AB^2-BH^2}\) với \(BH=\dfrac{2}{3}BM=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{3}\)

\(\Rightarrow AH=\sqrt{a^2-\dfrac{3a^2}{9}}=\dfrac{a\sqrt{6}}{3}\)

b, Ta có: \(H=AH=\dfrac{a\sqrt{6}}{3};r=BH=\dfrac{a\sqrt{3}}{3}\)

Diện tích xung quanh hình trụ là:

\(S_{xq}=2\pi rh=2\pi.\dfrac{a\sqrt{3}}{3}.\dfrac{a\sqrt{6}}{3}=\dfrac{2\pi\pi^2\sqrt{2}}{3}\)

Thể tích khối trụ là:

\(V=\pi r^2h=\pi\left(\dfrac{a\sqrt{3}}{3}\right)^2.\dfrac{a\sqrt{6}}{3}=\dfrac{\pi a^3\sqrt{6}}{9}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NK
Xem chi tiết