Ôn tập toán 7

DT

chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\left(a\ne b,c\ne d\right)ta\) có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

LF
26 tháng 9 2016 lúc 19:55

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->Đpcm

Bình luận (0)
NS
26 tháng 9 2016 lúc 19:58

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét : VT :

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(a\right)\)

Xé VP :\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(b\right)\)Từ ( a ) và ( b )=> Tỉ lệ thứ trên đúng => ĐPCM

 

Bình luận (0)
NT
26 tháng 9 2016 lúc 19:57

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

 

Bình luận (0)
HT
26 tháng 9 2016 lúc 20:02

Ta có:\(\frac{a}{b}=\frac{c}{d}=k\)

      \(\Rightarrow a=b.k\)

           \(c=d.k\)

       \(\Rightarrow\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

       \(\Rightarrow\frac{c+d}{c-d}=\frac{d.k+d}{d.k-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

       Từ (1) và (2) :

           \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

          Vậy\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
CD
Xem chi tiết
TH
Xem chi tiết
DL
Xem chi tiết