\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
=>\(cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\)
=>\(cda^2+cdb^2=abc^2+abd^2\)
=>\(cda^2-abc^2=abd^2-cdb^2\)
=>\(ac\left(da-bc\right)=bd\left(ad-cb\right)\)
=>\(\left(ac-bd\right)\left(ad-bc\right)=0\)
=>\(\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)