Đại số lớp 7

KR

cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\)

chứng tỏ ta có tỉ lệ thức: \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

NH
8 tháng 8 2017 lúc 20:27

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)

\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)

Bình luận (1)
LB
8 tháng 8 2017 lúc 20:41

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

VT: \(\dfrac{ac}{bd}=\dfrac{kb.kd}{b.d}=k^2\) (1)

VP: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(kb+kd\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) (2), suy ra:

\(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) (đpcm)

Bình luận (0)
TL
9 tháng 8 2017 lúc 9:33

Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2\) \(\left(1\right)\)

Theo bài ra ta lại có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\dfrac{ac}{bd}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\left(\dfrac{a+c}{b+d}\right)^2=\left(\dfrac{a}{b}\right)^2=\dfrac{ab}{cd}\)

\(\Rightarrow\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\left(ĐPCM\right)\)

Vậy \(\left(\dfrac{a+c}{b+d}\right)^2=\dfrac{ab}{cd}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
SD
Xem chi tiết
GT
Xem chi tiết
LM
Xem chi tiết
QD
Xem chi tiết
Xem chi tiết
DA
Xem chi tiết
TD
Xem chi tiết
LL
Xem chi tiết