Đại số lớp 7

LK

\(Cho \dfrac{a}{b}=\dfrac{c}{d} ;b+d khác 0 CM \dfrac{3a^2+c^2}{3b^2+d^2}=\dfrac{(a+c)^2}{(b+d)^2}\)

NT
10 tháng 4 2017 lúc 20:17

Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{3a^2+c^2}{3b^2+d^2}=\dfrac{3b^2k^2+d^2k^2}{3b^2+d^2}=\dfrac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{3a^2+c^2}{3b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
PL
Xem chi tiết
Xem chi tiết
KM
Xem chi tiết
GT
Xem chi tiết
PT
Xem chi tiết
UN
Xem chi tiết
SG
Xem chi tiết
DA
Xem chi tiết