Chương 1: MỆNH ĐỀ, TẬP HỢP

AD

cho tập hợp A=\(\left\{x\in R|2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\right\}\) số giá trị nguyên m \(\in\) (0;10] để tập A có đúng 3 phần tử là?

NL
24 tháng 10 2020 lúc 22:59

\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm

\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm

Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)

Để pt đã cho có 3 nghiệm thì:

TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)

Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)

TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)

\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)

Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)

Gọi \(x_0\) là nghiệm chung của (1) và (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)

- Với \(x_0=0\Rightarrow m=0\)

- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)

Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)

Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
BP
Xem chi tiết
NH
Xem chi tiết
KH
Xem chi tiết
DN
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
SN
Xem chi tiết
LV
Xem chi tiết