Đề số 1

VN

cho tam giác vuông vuông tại a biết AB = 10 cm góc b bằng 47 độ kết quả làm tròn đến chữ số thập phân thứ hai 1 giải tam giác vuông ABCD số đo góc làm tròn đến độ hai từ a kẻ đường cao AH h thuộc BC gọi d và e lần lượt là hình chiếu vuông góc của h trên AB AC chứng minh AB³ trên AC³ bằng BD trên EC. Giải nhanh giúp em với ạ em cần gấp

NT
8 tháng 11 2023 lúc 19:03

1: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}+47^0=90^0\)

=>\(\widehat{C}=43^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)

Xét ΔHAB vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BD=\dfrac{BH^2}{AB}\)

Xét ΔHAC vuông tại H có HE là đường cao

nên \(CE\cdot CA=CH^2\)

=>\(CE=\dfrac{CH^2}{AC}\)

\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^3}{AC^3}\)

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
AT
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết
MT
Xem chi tiết
CK
Xem chi tiết
H24
Xem chi tiết