Violympic toán 9

VP

Cho tam giác vuông, biết tỉ số giữa các cạnh góc vuông là \(\dfrac{5}{12}\), cạnh huyền là 26. Tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.

NT
1 tháng 7 2021 lúc 22:40

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)

nên \(AB=\dfrac{5}{12}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\dfrac{25}{144}AC^2+AC^2=26^2\)

\(\Leftrightarrow\dfrac{169}{144}AC^2=676\)

\(\Leftrightarrow AC^2=576\)

hay AC=24(cm)

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)(gt)

nên \(AB=\dfrac{5}{12}\cdot AC=\dfrac{5}{12}\cdot24=10\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot26=240\)

hay \(AH=\dfrac{120}{13}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
NS
Xem chi tiết
LV
Xem chi tiết
DF
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết