Ôn tập Hệ thức lượng trong tam giác vuông

PL

Cho tam giác nhọn ABC, đường cao BE, CF. Gọi SAEF, SABC lần lượt là diện tích của tam giác AEF và tam giác ABC. Chứng minh SAEF/SABC =1-sin2A

LL
15 tháng 12 2021 lúc 11:09

Xét tam giác AEF và tam giác ABC có:

A chung

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(=cosA\right)\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=1-sin^2A\)

Bình luận (0)
NM
15 tháng 12 2021 lúc 11:09

\(1-\sin^2A=\cos^2A=\dfrac{AF^2}{AC^2}\left(1\right)\)

Ta có \(\widehat{AEB}=\widehat{AFC}=90^0\Rightarrow\Delta AEB\sim\Delta AFC\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\\ \Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AF}{AC}\right)^2=\dfrac{AF^2}{AC^2}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
PT
Xem chi tiết
SK
Xem chi tiết
HA
Xem chi tiết
HD
Xem chi tiết