Tứ giác

EC

Cho tam giác nhọn ABC , các đường cao BD , CE cắt nhau tại H . Chứng minh rằng BH . BD + CH . CE = \(BC^2\)

TK
26 tháng 7 2018 lúc 10:12

Kẻ \(HM\perp BC\)
Xét \(\Delta BHM\)\(\Delta BCD\) ta có:
\(\widehat{BMH}=\widehat{BDC}=90^o\)
\(\widehat{CBD}\) chung
\(\Rightarrow\Delta BHM\sim\Delta BCD\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM\times BC=BH\times BD\left(1\right)\)
Xét \(\Delta CMH\)\(\Delta CEB\) ta có:
\(\widehat{BCE}\) chung
\(\widehat{CMH}=\widehat{CEB}=90^o\)
\(\Rightarrow\Delta CMH\sim\Delta CEB\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM\times CB=CH\times CE\left(2\right)\)
Cộng 2 vế của (1)(2) lại với nhau ta đc:
\(BM.BC+CM.CB=BH.BD+CH.CE\)
\(\Leftrightarrow BC\left(BM+CM\right)=BH.BD+CH.CE\)
\(\Rightarrow BC^2=BH.BD+CH.CE\left(đcpcm\right)\)
Vậy..............

Bình luận (0)
TK
26 tháng 7 2018 lúc 10:12

bonus cho cái hình lun nek
Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
NA
Xem chi tiết
CL
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết
HH
Xem chi tiết
PN
Xem chi tiết