Ôn thi vào 10

TT

Cho tam giác MNP nhọn nội tiếp (O) có MN < MP. Vẽ các đường cao MH, NK, PQ, đường kính MT. Chứng minh a) MN.MP=MH.MT b) Tứ giác NQKP nội tiếp c) MT vuông góc với KQ (Bạn nào rảnh giúp mình giải với 😭😭 mình đang cần gấp lắm ạ!!!)

HB
31 tháng 3 2022 lúc 10:58

Xét $\Delta MNH$ và $\Delta P$ ta có:

$\large \widehat{MHN}=\widehat{MPT}=90^o$ 

$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)

Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$

Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$

Xét tứ giác $NQKP$ ta có: 

$\large \widehat{NQP}=\widehat{PKN}=90^o$

Mà hai góc này cùng chắn cung $NP$ 

Do đó tứ giác $NQKP$ là tứ giác nội tiếp

Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)

Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$

Gọi $A$ là giao điểm của $QK$ và $MT$

Xét tứ giác $TPKA$ ta có:

$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$

Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp 

$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$

Do đó $MT$ vuông góc với $QK$

Hình: 

            undefined

Bình luận (2)

Các câu hỏi tương tự
TP
Xem chi tiết
AQ
Xem chi tiết
GH
Xem chi tiết
AQ
Xem chi tiết
X9
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết