Cho tam giác MNP vuông tại M có đường cao MD (D thuộc NP).Gọi I là trung điểm của MP,kẻ MH vuông góc với NI tại H. a.Chứng minh tứ giác MNDH nội tiếp.Tìm tâm đường tròn ngoại tiếp tứ giác MNDH. b.Chứng minh tam giác NDH đồng dạng với tam giác NIP.
cho tam giác MNP ccó ba góc nhọn, nội tiếp đường tròn tâm o và MN<MP, Vẽ đường kính MA của đường tròn (O). Kẻ NI vuông góc với MA(I thuộc MA). Kẻ MH vuông góc với NP(H thuộc NP). Chứng minh
a, tưds giác MNHI nội tiếp
b, góc NMH bằng góc NIH
c, HI song song với AP
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R).Các đường cao BE , CF cắt nhau tại H.
a.Chứng minh tứ giác AEHF,BFCE nội tiếp
b.Chứng minh tam giác AFE đồng dạng với tam giác ACB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O).Các đường cao AD,BE và CF của tam giác ABC cắt nhau tại H.
a.Chứng minh BCEF và CDHE là các tứ giác nội tiếp.
b.Chứng minh EB là tia phân giác của góc FED và tam giác BFE đồng dạng với tam giác DHE.
Cho tam giác ABC vuông tại A, Kẻ đường cao AH và phân giác BE của góc
ABC (H thuộc BC, E thuộc AC), Kẻ AD vuông góc với BE (D thuộc BE).
a) Chứng minh rằng tứ giác ADHB là tứ giác nội tiếp, xác định tâm O đường tròn
ngoại tiếp tứ giác ADHB (gọi là đường tròn (O)).
b) Chứng minh góc EAD = góc HBD và OD song song với HB.
c) Cho biết số đo góc ABC=60 độ và AB = a (a > 0 cho trước). Tính theo a diện tích
phần tam giác ABC nằm ngoài đường tron (O).
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O (AB < AC), đường cao AH cắt đường tròn O tại điểm thứ 2 mà M. Kẻ đường kính AD của (O). Chứng minh rằng:
a. AM vuông góc MD
b. Tam giác ABH đồng dạng với tam giác ADC. Từ đó suy ra BM = DC
c. Tứ giác BMDC là hình thang cân
Cho tam giác ABC vuông tại A có AC>AB. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm của đường tròn nội tiếp với các cạnh AB,BC,CA lần lượt tại M,N,P.
a) Chứng minh tứ giác AMIP là hình vuông
b) Đường thẳng AI cắt PN tại D. Chứng minh 5 điểm M,B,N,O,I nằm trên một đường tròn
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (AB <AC), đường cao BE của tam giác kéo dài cắt đường tròn (O) tại K. Kẻ KD vuông góc với BC tại D.
a) Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b) Chứng minh KB là tia phân giác của góc AKD.
c) Tia DE cắt đường thẳng AB tại I. Qua E kẻ đường thẳng vuông góc với OA, đường thẳng này cắt AB tại H. Chứng minh CH // KI
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MBHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I