Bài 3: Diện tích tam giác

CC

Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)

DD
7 tháng 12 2017 lúc 19:04

B C A a a a D H K T M

Kẻ đường cao AD nên AD cũng là đường trung tuyến .

Ta có :

\(S_{ABC}=S_{ABM}+S_{ACM}+S_{BCM}\)

\(\left\{{}\begin{matrix}S_{ABM}=\dfrac{a.MT}{2}\\S_{ACM}=\dfrac{a.MK}{2}\\S_{BCM}=\dfrac{a.MH}{2}\end{matrix}\right.\)

Cộng vế theo vế ta có :

\(S_{ABC}=\dfrac{a\left(MH+MK+MT\right)}{2}\)

Mặt khác :

\(S_{ABC}=\dfrac{a.AD}{2}\)

\(\Rightarrow AD=MK+MH+MT\)

Nên ta cần chứng minh :

\(AD=\dfrac{a\sqrt{3}}{2}\)

Ta có :

\(AD=\sqrt{a^2-CD^2}\) ( py - ta - go )

\(\Rightarrow AD=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\sqrt{a^2-\dfrac{a^2}{4}}=\sqrt{\dfrac{3a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)

Nên :

\(MK+MH+MT=\dfrac{a\sqrt{3}}{2}\)

Bình luận (0)
DH
7 tháng 12 2017 lúc 22:25

Sao lại làm dài vậy nhỉ?

a, Hạ đường cao AD của tam giác ABC

Ta có: \(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)

\(\Leftrightarrow\dfrac{AD.a}{2}=\dfrac{MI.a}{2}+\dfrac{MK.a}{2}+\dfrac{MH.a}{2}\)

\(\Leftrightarrow AD=MI+MK+MH\) (1)

Vì AD là đường cao của tam giác ABC nên AD đồng thời là đường trung tuyến

Do đó \(BD=\dfrac{a}{2}\)

Áp dụng định lý Pytago cho tam giác vuông ta có:

\(AD=\sqrt{a^2-\left(\dfrac{a}{2}\right)^2}=\sqrt{a^2-\dfrac{a^2}{4}}=\sqrt{\dfrac{4a^2-a^2}{4}}=\sqrt{\dfrac{3a^2}{4}}=\dfrac{a\sqrt{3}}{2}\) (2)

Thay (2) vào (1) ta được: \(MI+MK+MH=\dfrac{a\sqrt{3}}{2}\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
NT
Xem chi tiết
TV
Xem chi tiết