Bài 3: Diện tích tam giác

H24

Cho tam giác đều ABC cạnh a và điểm M bất kì nằm trong tam giá đó. gọi H, K,T tương ứng là hình chiếu vuông góc của điểm M trên BC, CA,AB. Chứng minh rằng MH + Mk + Mt = \(\dfrac{a\sqrt{3}}{2}\)

AH
19 tháng 11 2017 lúc 21:44

Lời giải:

Từ $A$ kẻ đường cao $AD$. Vì $ABC$ là tam giác đều nên $AD$ đồng thời là đường trung tuyến của tam giác $ABC$

\(\Rightarrow BD=\frac{BC}{2}\)

Áp dụng định lý Pitago: \(AD=\sqrt{AB^2-BD^2}=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}a}{2}\)

Khi đó:

\(S_{ABC}=\frac{AD.BC}{2}=\frac{\sqrt{3}a.a}{4}=\frac{\sqrt{3}a^2}{4}(1)\)

Mặt khác \(S_{ABC}=S_{MAB}+S_{MAC}+S_{MBC}\)

\(=\frac{MT.AB}{2}+\frac{MK.AC}{2}+\frac{MH.BC}{2}\)

\(\Leftrightarrow S_{ABC}=\frac{a(MT+MH+MK)}{2}(2)\)

Từ (1); (2)\(\Rightarrow \frac{a(MT+MH+MK)}{2}=\frac{\sqrt{3}a^2}{4}\)

\(\Leftrightarrow MH+MK+MT=\frac{\sqrt{3}a}{2}\)

Vậy ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
CC
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
NT
Xem chi tiết
TV
Xem chi tiết