Chương II : Tam giác

DA

cho tam giác ABC,D là trung điểm AB.Duờng thẳng D và song song với BC cắt AC tại E,đừong thẳng E song song với AB cắt BC tại F.Chứng minh:

a)BD=EF

b)E là trung điểm của AC

c)EF song song AC

d)DF=1/2 AC

SN
15 tháng 12 2017 lúc 23:29

a) Vì DE//BC (gt) nên EDF=BFD (slt)
Vì EF//AB (gt) nên BDF=DFE (slt)
Xét tam giác BDF và tam giác EFD, có:
BFD=EDF (cmt)
DF là cạnh chung
BDF=DFE (cmt)
Do đó tam giác BDF= tam giác EFD (g.c.g)
=>BD=EF ( hai cạnh tương ứng)
Vậy BD=EF
b) Từ tam giác BDF=tam giác EFD (cmt)
=> BD=EF ( hai cạnh tương ứng)
Mà BD=DA ( do D là trung điểm của AB)
=> EF=DA
Vì EF//AB (gt) nên FEC=DAE (slt); EFC=DBF (đồng vị)(*)
Vì DE//BC (gt) nên ADE=DBF (đồng vị)(**)
Từ (*) và (**) suy ra EFC=ADE
Xét tam giác FEC và tam giác DAE, có:
EFC=ADE(cmt)
EF=DA (cmt)
FEC=DAE (cmt)
Do đó tam giác FEC= tam giác DAE (g.c.g)
=> EC=AE (hai cạnh tương ứng)
=> E là trung điểm của AC
Vậy E là trung điểm của AC (đpcm)
c) Vì AD//EF(gt) nên ADE=FED (cmt)
Xét tam giác DEF và tam giác EDA, có:
EF=AD(cmt)
FED=ADE(cmt)
DE là cạnh chung
Do đó tam giác DEF= tam giác EDA (c.g.c)
=>FDE=DEA ( hai góc tương ứng)
Mặt khác chúng lại ở vị trí so le trong nên suy ra DF//AC
Vậy DF//AC (đpcm)
d)Vì DF//AC (cmt) nên DBF=EFC (đồng vị)
FEC=DFE(slt)(1)
Vì EF//AB(gt) nên DFE=BDF(slt)(2)
Từ (1) và (2) suy ra FEC=BDF
Xét tam giác BDF và tam giác FEC, có:
BDF=FEC(cmt)
BD=EF(cmt)
DBF=EFC(cmt)
Do đó tam giác BDF=tam giác FEC(g.c.g)
=>DF=EC(hai cạnh tương ứng)
Mà EC=1/2 AC (do E là trung điểm của AC)
=> DF=1/2.AC
Vậy DF=1/2.AC (đpcm)
(hình bạn tự vẽ nha)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
SD
Xem chi tiết
PG
Xem chi tiết
RC
Xem chi tiết
NJ
Xem chi tiết
LN
Xem chi tiết
SD
Xem chi tiết
HL
Xem chi tiết
CV
Xem chi tiết