Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài toán 8. Cho tam giác ABC nhọn có BC =a,CA=b,AB= c trong đó b—c=a/k;(k>1). Gọi ha,hb,hc lần lượt là độ dài các đường cao hạ từ A,B,C. Chứng minh rằng: 1. 1/ha=k(1/Hb-1/hc) 2. a/sinA=b/sinB=c/sinC và sinA=k(sinB-sinC)
Cho tam giác vuông ABC vuông tại a AB bé hơn AC có đường cao AH (H thuộc BC) AB = 3 BH =1,8 A) tính BC AH AC B) kẻ HD vuông AC (D thuộc AC) chứng minh HC = AD.AC/HB C) gọi e là điểm đối xứng với H qua AB. Chứng minh S tam giác AED = sin²AHD . S tam giác ACE
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC vuông tại A, đường cao AH, AC=16cm, HB=7,2cm. Tính AH, AB, BC, HC
Cho tam giác ABC vuông tại A , đường cao AH, AB=20 cm, HC=9cm. Tính độ dài AH.
Cho tam giác ABC có AB = 6cm, AC = 4,5cm. BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào ?
Cho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BC
a, Chứng minh: Tam giác ABC là tam giác vuông và tính AH
b, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.AC
c, Tam giác AEF đồng dạng tam giác ABC
d,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)
e, BC.BE.CF=\(AH^{3}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK