Ôn thi vào 10

H24

Cho tam giác ABC(AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC. Chứng minh EFDO là tứ giác nội tiếp.

NT
21 tháng 8 2022 lúc 11:36

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BN
Xem chi tiết
KT
Xem chi tiết
NL
Xem chi tiết
NK
Xem chi tiết
NH
Xem chi tiết
ES
Xem chi tiết
GN
Xem chi tiết
MG
Xem chi tiết