Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

KR

Cho tam giác ABC

a) CM: \(\left(p-a\right)\left(p-b\right)\left(p-c\right)< \dfrac{1}{8}abc\)

b) \(\dfrac{r}{R}\le\dfrac{1}{2}\) ( trong đó r là bán kính đg tròn nội tiếp, R là bk đg tròn ngoại tiếp)

c) \(\dfrac{a}{m_a}+\dfrac{b}{m_b}+\dfrac{c}{m_c}\ge2\sqrt{3}\)   trong đó ma,mb,mc là đg trung tuyến hạ từ các đỉnh

d) Gọi la là độ dài đg phân giác xuất phát từ đỉnh A. CM

\(l_a^2=\dfrac{4bc}{\left(b+c\right)^2}p\left(p-a\right)\)

Cm: \(b+c\ge\dfrac{a}{2}+\sqrt{3}l_a\)

HP
19 tháng 1 2021 lúc 17:25

a, Áp dụng BĐT Cosi:

\(\sqrt{\left(p-a\right)\left(p-b\right)}\le\dfrac{p-a+p-b}{2}=\dfrac{c}{2}\)

\(\sqrt{\left(p-b\right)\left(p-c\right)}\le\dfrac{p-b+p-c}{2}=\dfrac{a}{2}\)

\(\sqrt{\left(p-c\right)\left(p-a\right)}\le\dfrac{p-c+p-a}{2}=\dfrac{b}{2}\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{1}{8}abc\)

Bình luận (0)
HP
19 tháng 1 2021 lúc 17:29

b, \(\dfrac{r}{R}=\dfrac{\dfrac{S_{ABC}}{p}}{\dfrac{abc}{4S_{ABC}}}\)

\(=\dfrac{4S_{ABC}^2}{p.abc}=\dfrac{4.p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p.abc}\)

\(\le\dfrac{4.p.\dfrac{1}{8}abc}{p.abc}=\dfrac{1}{2}\)

Bình luận (0)
HP
19 tháng 1 2021 lúc 17:58

c, Áp dụng BĐT Cosi:

\(a.m_a=\dfrac{2\sqrt{3}}{3}.\dfrac{\sqrt{3}}{2}a.m_a\)

\(\le\dfrac{2\sqrt{3}}{3}.\dfrac{\dfrac{3}{4}a^2+m_a^2}{2}\)

\(=\dfrac{\sqrt{3}}{3}.\left(\dfrac{3}{4}a^2+\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)\)

\(=\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}\)

\(\Rightarrow a.m_a\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6};b.m_b\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6};c.m_c\le\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}\)

Khi đó \(\dfrac{a}{m_a}+\dfrac{b}{m_b}+\dfrac{c}{m_c}\)

\(=\dfrac{a^2}{a.m_a}+\dfrac{b^2}{b.m_b}+\dfrac{c^2}{c.m_c}\)

\(\ge\dfrac{a^2+b^2+c^2}{\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{6}}=2\sqrt{3}\)

Bình luận (1)

Các câu hỏi tương tự
KR
Xem chi tiết
NL
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
CM
Xem chi tiết
NC
Xem chi tiết
ND
Xem chi tiết
LY
Xem chi tiết