Chương II : Tam giác

NK

cho tam giác abc vuông tại A; M là trung điểm của AC trên tia đối của tia MB lấy điểm D sao cho MD=MB
a).Chứng minh tam giác ABM =tam giác CDM.
b)So sánh AC<BC và AC<BD

NN
29 tháng 3 2021 lúc 17:46

xét ΔABM và ΔCDM :

         AM = CM ( M là t/đ của AC )

       góc AMB = góc CMD ( đối đỉnh )

      MB = MD ( gt)

do đó : ΔABM = ΔCDM ( c.g.c )

Bình luận (0)
NT
29 tháng 3 2021 lúc 19:43

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

Ta có: \(\widehat{MCD}+\widehat{MCB}=\widehat{DCB}\)(Tia CM nằm giữa hai tia CD,CB)

nên \(\widehat{DCB}>\widehat{MCD}\)

hay \(\widehat{DCB}>90^0\)

Xét ΔDCB có \(\widehat{DCB}>90^0\)(cmt)

mà cạnh đối diện với \(\widehat{DCB}\) là cạnh DB

nên DB là cạnh lớn nhất trong ΔDCB(Định lí)

hay DB>BC

mà BC>AC(ΔABC vuông tại A có BC là cạnh huyền nên BC là cạnh lớn nhất)

nên AC<BD(Đpcm)

Bình luận (0)

Các câu hỏi tương tự
MC
Xem chi tiết
BT
Xem chi tiết
TN
Xem chi tiết
MC
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết