Chương II : Tam giác

TT

Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng

TT
10 tháng 12 2020 lúc 21:55

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
MT
Xem chi tiết
MC
Xem chi tiết
YM
Xem chi tiết
ST
Xem chi tiết
HU
Xem chi tiết
GV
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết