Kẻ DI _I_ AE.
BH // DI (BH _I_ AE và DI _I_ AE)
B là trung điểm của AD (D đối xứng A qua B)
=> H là trung điểm của AI
=> BH là đường trung bình của \(\Delta ADI\) và AH = HI = IE
\(\Rightarrow DI=2BH\)
Áp dụng hệ thức lượng trong \(\Delta ABC\) vuông tại A:
AH2 = BH . CH
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\)
mà \(\dfrac{ID}{IE}=\dfrac{2BH}{AH}\) ; \(\dfrac{HE}{HC}=\dfrac{2AH}{HC}\)
\(\Rightarrow\dfrac{ID}{IE}=\dfrac{HE}{HC}\)
=> \(\Delta IDE~\Delta HEC\left(c.g.c\right)\)
\(\Rightarrow\widehat{IED}=\widehat{HCE}\)
\(\Rightarrow\widehat{DEC}=\widehat{IED}+\widehat{HEC}=\widehat{HCE}+\widehat{HEC}=90^0\left(\text{đ}pcm\right)\)