Chương I - Hệ thức lượng trong tam giác vuông

AN

Cho tam giác ABC vuông tại A có AH vuông góc với BC. Biết CH= 9cm, AH=12cm. Tính độ dài BC, AB, AC

NT
28 tháng 7 2021 lúc 15:26

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm 

-> BC = CH + BH = 9 + 16 = 25 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm

Áp dụng đlí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)

=> AC = 15 cm 

Bình luận (0)
TH
28 tháng 7 2021 lúc 15:33

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

AC2 = AH2 + HC2 = 122 + 92 = 225

\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:

AC2 = BC.HC

\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)

Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:

BC2 = AB2 + AC2 

\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400

\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)

Vậy ...

Chúc bn học tốt!

Bình luận (1)
NT
29 tháng 7 2021 lúc 0:41

\(AC=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(BC=\dfrac{AC^2}{CH}=\dfrac{15^2}{9}=\dfrac{225}{9}=25\left(cm\right)\)

\(AB=\sqrt{25^2-15^2}=20\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
YN
Xem chi tiết
TT
Xem chi tiết
VK
Xem chi tiết
LH
Xem chi tiết
PA
Xem chi tiết
GB
Xem chi tiết
NT
Xem chi tiết
NK
Xem chi tiết