Đa giác. Diện tích của đa giác

H24

Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.

  a) Tính đường cao AH.

  b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.

  c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.

NT
10 tháng 12 2020 lúc 22:19

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

Bình luận (0)

Các câu hỏi tương tự
IB
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết