Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

KP

Cho Tam giác ABC vuông tại A, BM là tia phân giác. Vẽ MH vuông góc BC, MH cắt AB tại e

a) chứng minh tam giác ABM = tam giác HBM

b)so sánh AM và CM

c)chứng minh BM vuông góc EC

NT
18 tháng 8 2021 lúc 20:57

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có 

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

b: Ta có: ΔABM=ΔHBM

nên AM=HM

mà HM<CM

nên AM<CM

c:

Ta có: ΔBAM=ΔBHM

nên BA=BH

Xét ΔAME vuông tại A và ΔHMC vuông tại H có

MA=MH

\(\widehat{AME}=\widehat{HMC}\)

Do đó: ΔAME=ΔHMC

Suy ra: ME=MC và AE=HC

Ta có: BA+AE=BE

BH+HC=BC

mà BA=BH

và AE=HC

nên BE=BC

Ta có: BE=BC

nên B nằm trên đường trung trực của EC\(\left(1\right)\)

Ta có: ME=MC

nên M nằm trên đường trung trực của EC\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của EC

hay BM\(\perp\)EC

Bình luận (1)
PG
18 tháng 8 2021 lúc 21:03

a)  Xét △ ABM và △ HBM có: 

     \(\widehat{BAM}=\widehat{BHM}=90^0\) 

            BM chung

 \(\widehat{ABM}=\widehat{HBM}\) ( BM phân giác của \(\widehat{B}\) )

⇒ △ ABM = △ HBM ( ch - gn )

b) Vì △ ABM = △ HBM ( cmt )

⇒ AM = HM ( 2 cạnh tương ứng )

△ AME = ▲ CMH ( g - c - g )

⇒ AM = CM ( 2 cạnh tương ứng )

c)  Gọi N là giao điểm của BM và CE

Cm △ EBN = △ CBN ( c - g - c )   ( tự chứng minh nha, mik mệt quá )

\(\widehat{ENB}=\widehat{CNB}\) ( 2 góc tương ứng )

mà \(\widehat{ENB}=\widehat{CNB}=180^0\) ( kề bù )

⇒ BN ⊥ CE

⇒ BM ⊥ CE ( M ∈ BN )

Bình luận (1)

Các câu hỏi tương tự
NY
Xem chi tiết
NK
Xem chi tiết
TK
Xem chi tiết
KT
Xem chi tiết
NT
Xem chi tiết
LH
Xem chi tiết
QT
Xem chi tiết
QT
Xem chi tiết
HT
Xem chi tiết