Bài 7: Ví trí tương đối của hai đường tròn

NL

Cho tam giác ABC vuông tại A, BC = 5cm, AB = 1/2 AC

a.Tính AB, AC.

b. Từ A kẻ đường cao AH, gọi I là trung điểm AH. Từ B kẻ đường thẳng (d) vuông góc với BC. Gọi D là giao điểm của 2 đường thẳng CI và (d). Diện tích tứ giác BIHD ? c.

c. Vẽ đường tròn (B;BA) và đường tròn (C;CA). Gọi giao điểm khác A của 2 đường tròn này là E. Chứng minh CE là tiếp tuyến của đường tròn (B;BA)

NT
1 tháng 12 2018 lúc 16:28

Hỏi đáp Toán

a, Ta có: \(AB=\dfrac{1}{2}AC\Leftrightarrow AC=2AB\)

\(\Delta ABC\) có: \(\hat{BAC}=90^o\)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý Py-ta-go)

hay \(AB^2+4AB^2=5^2\)

\(5AB^2=25\)

\(AB^2=5\)

\(AB=\sqrt{5}\left(cm\right)\Rightarrow AC=2\sqrt{5}\left(cm\right)\left(AC=2AB\right)\)

b, Áp dụng hệ thức lượng vào \(\Delta ABC\) ta được \(HC=4\left(cm\right)\)

Áp dụng định lý Py-ta-go vào \(\Delta AHC\)\(\Delta AHB\) ta được \(AH=2\left(cm\right)\)\(\Rightarrow HI=1\left(cm\right)\)\(BH=1\left(cm\right)\)

\(\Delta CBD\) có: HI // BD \(\left(\perp BC\right)\)\(\Rightarrow\dfrac{HI}{BD}=\dfrac{CH}{BC}\)(hệ quả định lý Ta-lét) \(\Leftrightarrow\dfrac{1}{BD}=\dfrac{4}{5}\Rightarrow BD=1,25\left(cm\right)\)

Tứ giác BHID có: HI // BD (cmt) nên là hình thang

\(\Rightarrow S_{BHID}=\dfrac{\left(HI+BD\right).BH}{2}=\dfrac{\left(1+1,25\right).1}{2}=1,125\left(cm^2\right)\)P.S: Có vẻ không đúng lắm, kiểm tra lại nhé

c, Xét \(\Delta CEB\)\(\Delta CAB\) ta có:

CB chung

EB = AB = bán kính (B)

CE = CA = bán kính (C)

\(\Rightarrow\Delta CEB=\Delta CAB\left(c-c-c\right)\)\(\Rightarrow \hat{BEC}=\hat{BAC}=90^o\)\(\Rightarrow BE\perp EC\)

(B;BA) có: \(BE\perp EC,BE=R\Rightarrow\)CE là tiếp tuyến của (B;BA)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NM
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết