Tam giác đồng dạng

AQ

Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB

DL
9 tháng 5 2021 lúc 19:36

a, Xét △ABC và △HBA có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△ABC∼△HBA (g.g)

⇒ 

Bình luận (0)
DL
9 tháng 5 2021 lúc 20:08

c, từ b, △ADC∼△BEC

⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)

Xét △AHC và △BAC có:

∠AHC=∠BAC (=90o) , ∠BCA chung

⇒ △AHC∼△BAC (g.g)

⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
KN
Xem chi tiết
NL
Xem chi tiết
NK
Xem chi tiết
FJ
Xem chi tiết
DA
Xem chi tiết
LD
Xem chi tiết