Ôn tập Hệ thức lượng trong tam giác vuông

BN

Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao (H \(\in\) BC). Gọi M và N lần lượt là hình chiếu của H lên AB và AC.

a) Chứng minh: AM.AB = AN.AC

b) Chứng minh: AM.AN = \(\frac{AH^3}{BC}\)

c) Chứng minh: AB3.CN = AC3.BM

NK
29 tháng 10 2020 lúc 23:00

Tự vẽ hình nhé

a) \(CM:AM.AB=AN.AC\)

`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`

\(AH^2=AM.AB\left(HTL\right)\left(1\right)\)

`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`

\(AH^2=AN.AC\left(HTL\right)\left(2\right)\)

`text{Từ (1) và (2)}` \(\Rightarrow AM.AB=AN.AC\left(=AH^2\right)\)

b) \(CM:AM.AN=\frac{AH^3}{BC}\)

`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`

\(AH^2=AM.AB\left(HTL\right)\\ \Rightarrow AM=\frac{AH^2}{AB}\left(3\right)\)

`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`

\(AH^2=AN.AC\left(HTL\right)\\ \Rightarrow AN=\frac{AH^2}{AC}\left(4\right)\)

`text{Xét ΔABC vuông tại H (gt), AM là đường cao (gt)}`

\(AB.AC=AH.BC\left(HTL\right)\\ \Rightarrow AH^3.AB.AC=AH^3.AH.BC\\ \Rightarrow AH^3.AB.AC=AH^4.BC\\ \Rightarrow\frac{AH^4}{AB.AC}=\frac{AH^3}{BC}\\ \Rightarrow\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^3}{BC}\\ \Rightarrow AM.AN=\frac{AH^3}{BC}\left(do\left(3\right)\left(4\right)\right)\)

c) `text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`

\(BH^2=BM.BC\left(HTL\right)\Rightarrow BM=\frac{BH^2}{AB}\left(5\right)\)

`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`

\(CH^2=CN.AC\left(HTL\right)\Rightarrow CN=\frac{CH^2}{AC}\left(6\right)\)

`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`

`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`

\(AB^2=BH.BC\left(HTL\right)\\ AC^2=CH.BC\left(HTL\right)\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=BH.CH\\ \Rightarrow AB^3.CH=AC^2.BH\\ \Rightarrow AH^4.CH^2=AC^4.BH^2\\ \Rightarrow AB^3.CH^2.AB=AC^3.BH^2.AC\\ \Rightarrow AB^3.\frac{CH^2}{AC}=AC^3.\frac{BH^2}{AB}\\ \Rightarrow AB^3=CN=AC^3.BM\left(do\left(5\right)\left(6\right)\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PP
29 tháng 10 2020 lúc 22:51

A B C H M N

Bình luận (0)
 Khách vãng lai đã xóa
PP
29 tháng 10 2020 lúc 23:03

a)Xét\(\Delta AHB\) vuông tại H có: \(AH^2=AM.AB\)

Xét\(\Delta AHC\) vuông tại H có: \(AH^2=AN.AC\)

\(\Rightarrow\) AM.AB=AN.AC

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HA
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết