Hình học lớp 8

MP

Cho tam giác ABC với 3 đường cao AA' , BB' và CC' gọi H là trực tâm của tam giác. CMR : \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)

NN
30 tháng 11 2016 lúc 20:38

Chứng minh gì lạ vậy bạn.

Bình luận (2)
LL
1 tháng 12 2016 lúc 16:58

cho cau hoi ko co chung minh ai lam dc

Bình luận (1)
LH
11 tháng 4 2017 lúc 19:24

a a' b b' c c' h

\(\dfrac{s_{hbc}}{s_{abc}}=\dfrac{\dfrac{ha'.bc}{2}}{\dfrac{aa'.bc}{2}}=\dfrac{ha'}{aa'}\\ cmtt\\ =>\left\{{}\begin{matrix}\dfrac{s_{ahc}}{s_{abc}}=\dfrac{hb'}{bb'}\\\dfrac{s_{ahb}}{s_{abc}}=\dfrac{hc'}{cc'}\end{matrix}\right.\\ =>\dfrac{ha'}{aa'}+\dfrac{hb'}{bb'}+\dfrac{hc'}{cc'}=\dfrac{s_{hbc}}{s_{abc}}+\dfrac{s_{ahc}}{s_{abc}}+\dfrac{s_{ahb}}{s_{abc}}\\ =\dfrac{s_{abc}}{s_{abc}}\\ =1\left(đpcm\right)\)

vậy ...

chúc may mắn :))

Bình luận (0)