Chương 1: VECTƠ

NY

Cho tam giác ABC và tam giác A'B'C' có G và G' là 2 trọng tâm. Chứng minh vector GG' bằng 1/3 (A'+BB'+CC')

AH
10 tháng 7 2018 lúc 18:55

Lời giải:

Ta nhớ tới công thức: Với $G$ là trọng tâm của tam giác $ABC$ thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)

Chứng minh:

Kéo dài $GA$ cắt $BC$ tại $I$ thì $I$ là trung điểm của $BC$. Khi đó: \(\overrightarrow{IB}+\overrightarrow{IC}=0\)

$G$ là trọng tâm nên theo tính chất trọng tâm: \(GA=2GI\rightarrow \overrightarrow{GA}=-2\overrightarrow{GI}\)

Khi đó:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow {GA}+\overrightarrow{GI}+\overrightarrow {IB}+\overrightarrow{GI}+\overrightarrow{IC}\)

\(=\overrightarrow{GA}+2\overrightarrow{GI}+(\overrightarrow{IB}+\overrightarrow{IC})=\overrightarrow{GA}+2\overrightarrow{GI}\)

\(=-2\overrightarrow{GI}+2\overrightarrow{GI}=0\) (đpcm)

Hoàn toàn tương tự: \(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=0\)

Quay về bài toán và áp dụng công thức trên:

\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}\)

\(=-(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'})\)

\(=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)

\(=\overrightarrow {GG'}+\overrightarrow{G'A'}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{GG'}+\overrightarrow{G'C'}\)

\(=3\overrightarrow{GG'}+(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'})\)

\(=3\overrightarrow {GG'}\)

\(\Rightarrow \overrightarrow{GG'}=\frac{1}{3}(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'})\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
TC
Xem chi tiết
BT
Xem chi tiết
GH
Xem chi tiết
BT
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết