Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) \(\Rightarrow OH=2\sqrt{2}\)
Áp dụng định lý Pitago cho tam giác OAH:
\(AH=\sqrt{OA^2-OH^2}=\sqrt{3^2-\left(2\sqrt{2}\right)^2}=1\)
\(\Rightarrow AB=2AH=2\left(cm\right)\)
Gọi K là trung điểm AC \(\Rightarrow OK\perp AC\Rightarrow OK=\dfrac{\sqrt{11}}{2}\)
Áp dụng định lý Pitago cho tam giác AOK:
\(AK=\sqrt{OA^2-OK^2}=\sqrt{3^2-\left(\dfrac{\sqrt{11}}{2}\right)^2}=2,5\left(cm\right)\)
\(\Rightarrow AC=2AK=5\left(cm\right)\)
Hình vẽ (chỉ mang tính chất minh họa):