Vẽ phân giác góc BAC, cắt BC tại E
=> AB/AC = BE/EC
Cần cm : HB/HC)+(MB/MC) ≥ 2.BE/EC (1)
Dễ cm dc : góc BAH=góc MAC
Từ C vẽ đường thẳng song song AB cắt AD tại I , AE tại N, AH tại K
=> BH/HC=AB/CK
BE/EC=AB/CN
MB/MC=AB/CI
=> (1) <=> AB/CK+AB/CI≥2AB/CN
<=> 1/CK+1/CI≥2/CN
ta có tam giác CAK cân tại C (dễ cm dc) => AC=CN
=> (2) <=> 1/CK+1/CI≥1/AC
ta có góc CAI =BAH ( cm rồi)
và góc BAH=AKC (so le trong) =>góc CAD=AKC => tam giác IAC ~ tam giác AKC
=> CK.CI=AC2
Ta có (3) <=>CK+CI/CK.CI≥2AC
⇔CK+CI/AC2≥2AC
⇔CK+CI≥2AC
⇔CK+CI≥2. căn(CK.CI)
=> đpcm