Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác ABC (AB<AC) nhọn nội tiếp đường tròn tâm O. Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của BE và CF.Đường thẳng đi qua F song song với AC cắt AK , AD lần lượt tại M,N. Chứng minh MF=NF
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
cho ΔABC nhọn có AB < AC nội tiếp (O;R), các đường cao BE, CF cắt nhau tại H
a) C/m tứ giác BFEC nội tiếp
b) Gọi I là trung điểm của BC, K là điểm đối xứng với H qua I. C/m AK⊥EF
Cho tam giác ABC, AB<AC có 3 góc nhọn nội tiếp đường tròn (O), gọi I là tâm đường tròn nội tiếp, tia AI cắt (O) tại D, AD cắt BC tại J
a) DI2=DJ.DA
b) Kẻ đường kính DE của (O), đường thẳng AE cắt BI và CI lần lượt tại F và H. C/m E là trung điểm FH.
c) Lấy điểm K thuộc cung nhỏ BC của đường tròn (O), M là điểm đối xứng của I qua K, N là giao điểm của BH và CF. C/m H,F,M,N thuộc 1 đường tròn