Ôn tập cuối năm phần hình học

TK

Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm đối xứng với E qua BC. CMR: F,D,K thẳng hàng.

DH
27 tháng 8 2017 lúc 6:55

Ôn tập cuối năm phần hình học

Nối E với D.\(EK\cap BC=\left\{M\right\}\).

Xét tam giác DME và tam giác DMK ta có:

\(\left\{{}\begin{matrix}EM=KM\left(gt\right)\\\widehat{DME}=\widehat{DMK}\left(=90^o\right)\\DM:chung\end{matrix}\right.\)

Do đó \(\Delta DME=\Delta DMK\left(c.g.c\right)\)

\(\Rightarrow\widehat{MDE}=\widehat{MDK}\left(cgtu\right)\)(1)

\(\widehat{MDK}=\widehat{BDF}\left(d.d\right)\)

\(\Rightarrow\widehat{MDE}=\widehat{BDF}\)

Ta có:

\(\widehat{HDM}=\widehat{HDB}\left(=90^o\right)\)

\(\Rightarrow\widehat{EDM}+\widehat{EDH}=\widehat{FDB}+\widehat{FDH}\)

\(\widehat{EDM}=\widehat{FDB}\left(cmt\right)\)

Do đó \(\widehat{EDH}=\widehat{FDH}\)(2)

Từ (1) và (2) suy ra:

\(\widehat{EDH}+\widehat{EDM}=\widehat{FDH}+\widehat{KDM}\)

\(\Rightarrow\widehat{FDH}+\widehat{KDM}=90^o\)

Do đó: \(\widehat{EDH}+\widehat{EDM}+\widehat{FDH}+\widehat{KDM}=90^o+90^o\)

\(\Rightarrow\widehat{FDK}=180^o\)

Vậy ba điểm F;D;K thẳng hàng

Chúc bạn học tốt!!!

Bình luận (3)

Các câu hỏi tương tự
PN
Xem chi tiết
NM
Xem chi tiết
BH
Xem chi tiết
PC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
P2
Xem chi tiết
H24
Xem chi tiết
QA
Xem chi tiết