Bài 4: Tính chất ba đường trung tuyến của tam giác

Cho tam giác ABC nhọn (AB<AC) vẽ AH vuông góc BC ( H thuộc BC),HI vuông góc AB,HK vuông góc AC(I thuộc AB, K thuộc AC).Trên tia đối của tia IH, KH lấy các điểm E và F sao cho IE=IH , KF=KH

a) chưng minh AE=AF

b)Gỉa sử góc BAC=60 độ. Tính số đo các góc của tam giác AEF

C)Gọi M là trung điểm của BC, vẽ BP vuông góc AM ( CP thuộc AM) và CQ vuông góc với đường thẳng AM ( K thuộc AM) chứng minh BP=CQ

NM
31 tháng 10 2021 lúc 9:42

a, Vì AI là đg cao và trung tuyến tg AHE nên tg AHE cân tại A \(\Rightarrow AE=AH\)

Vì AK là đg cao và trung tuyến tg AHF nên tg AHF cân tại A \(\Rightarrow AF=AH\)

Vậy \(AE=AF\)

b, Vì AI, AK là đg cao của 2 tg cân nên chúng cũng là phân giác của 2 tg đó

\(\Rightarrow\widehat{EAF}=\widehat{EAH}+\widehat{HAF}=2\left(\widehat{KAH}+\widehat{IAH}\right)=2\cdot\widehat{BAC}=120^0\)

Vì \(AE=AF\) nên tg AEF cân tại A

Vậy \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{EAF}}{2}=30^0\)

Bình luận (1)

Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
DQ
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
Xem chi tiết
SH
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết