Cho tam giác ABC có cạnh BC nhỏ nhất, đường tròn (I) nội tiếp tam giác và tiếp xúc ba cạnh BC,CA,AB lần lượt tại D,E,F. Gọi M,N lần lượt là hai điểm đối xứng của C,B qua E,F. Các đường thảng BM,CN cắt EF lần lượt tại K,L. Chứng minh rằng DK// và D thuộc trung trực của Kl
Cho tam giác ABC nhọn. Đường tròn (I;r) nội tiếp tam giác, tiếp xúc với các cạnh BA, CA, AB lần lượt tại các điểm D, E, F. Hình chiếu của các điểm B, C, D trên EF lần lượt là X, Y, K. a) CMR: BD.KC=BK.CD b) Gọi G là điểm nằm trên cung nhỏ EF của đường tròn (I). Tiếp tuyến tại G của đường tròn (I) cắt AB, AC tại T, J. Tìm vị trí của G cung nhỏ EF để diện tích tam giác ATJ đạt giá trị lớn nhất. c) Gọi H là trực tâm của tam giác ABC. CMR: IKD=HKD Chỉ được dùng kiến thức hk1 lớp 9. Giúp tớ với ạ! Mai tớ phải nộp rùii
Cho tam giác ABC vuông tại A có đường cao AH, trên cạnh BC lấy 2 điểm E, F sao cho CE=CA; BF=AB. Gọi I, K, L lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm BI với AC. Chứng minh
a) IE=IF.
b) Giả sử AB=3, AC=4. TÌm khoảng cách từ I,K,L tới BC
Cho tam giác ABC, các đường cao AD,BE,CF. Gọi H là trực tam của tam giác.
a) Chứng minh A, E, H, F cùng nằm trên một đường tròn xác định tâm I.
b) Gọi O là trung điểm BC. Chứng minh OE là tiếp tuyến đường tròn tâm I.
Cho tam giác ABC, các đường cao AD, BE và CF. Gọi H là trực tâm của tam giác.
a) Chứng minh 4 điểm A,E,H,F cùng nằm trên 1 đường tròn xác định tâm I.
b) gọi O là trung điểm BC. Chứng minh OE là tiếp điểm của đường tròn (I).
Cho ABC tam giác nhọn ( AB song song AC ) Đường tròn tâm O có đường kính BC cắt AB ;
AC lần lượt tại E ; F .
a) C/m: tam giác BECvà tam giácBFC là các tam giác vuông
b) Gọi K là giao điểm của BF và CE. Chứng minh: AKBC
c) Chứng minh: 4 điểm A; E; K; F cùng thuộc một đường tròn.
Câu 1. Cho tam giác ABC. Gọi O là giao điểm của ba đường trung trực của tam giác ABC. Gọi M, N, P lần lượt là hình chiếu O trên các cạnh AB, BC, CA. Biết AB > BC > CA. Khi đó:
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = R^2 ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
Từ điểm A nằm ngoài đường tròn, vẽ tiếp tuyến AB,AC với B ,C là tiếp điểm. Vẽ cát tuyến AEF không đi qua tâm (O) ( E nằm giữa A và F). Vẽ đường kính . Các tia DE, DF cắt AO theo thứ tự lần lượt M ,N . a)C/m:tam giác DMN đồng dạng tam giác CEF