Cho tam giác ABC, M là điểm bất kì trên BC. Vẽ đường thẳng MN//AC (N thuộc AB), đường thẳng MP//AB ( P thuộc AC)
ch/m: \(\dfrac{AN}{AB}+\dfrac{AP}{AC}=1\)
Cho tam giác ABC, M là điểm bất kì trên BC. Vẽ đường thẳng MN//AC (N thuộc AB), đường thẳng MP//AB ( P thuộc AC)
ch/m:
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giác ABC kẻ MN//BC (M thuộc AB,N thuộc AC),AB=9cm,AM=6cm,AN=4cm.Tính độ dài các đường thẳng NC,MN,BC.
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
Cho tam giác ABC vuông tại A (AB<AC), phân giác BD (D thuộc AC). Gọi M là trung điểm của BC.
Đường thẳng MD cắt đường thẳng BA tại N. Qua A kẻ đường thẳng song song với BC cắt NM, NC thứ tự tại P và Q
a) CMR: PA=PQ
b) Qua B kẻ đường thẳng vuông góc với BC cắt tia CA tại E. CMR: DA.EB=DC.EA
c) CM: Hai tam giác EBD và NBD có diện tích bằng nhau
Cho tam giác ABC có AB=12cm , AC=15cm, BC=q6cm. Trên cạnh AB lấy điểm M sao cho AM=3cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N, cắt trung tuyến AI tại K.
a/ Tính độ dài MN
b/ Chứng minh K là trung điểm của MN
c/ Trên tia MN lấy điểm P sao cho MP=8cm. Nối PI cắt AC tại Q. Chững minh tam giác QIC đồng dạng với tam giác AMN
Cho tam giác ABC vuông tại A , M là điểm bất kì trên cạnh BC . Gọi N là điểm đối xứng với M qua AB , K là điểm đối xứng với M qua AC . MN cắt AB tại I , MK cắt AC tại H
a ) Tính diện tích tứ giác ANBM biết AB = 8cm , MN = 3cm
b ) Chứng minh tứ giác AIMH lá hình chữ nhật
c ) Chứng minh tứ giác ANIH là hình bình hành
d ) Chứng minh N đối xứng với K qua A
câu 1:cho tam giác abc, điểm d thuộc cạnh bc. qua d kẻ đường thẳng song song với ac, ab , chúng cắt ab , ac theo thứ tự ở e, f . cm
\(\frac{ae}{ab}\)+\(\frac{af}{ac}\)=1
câu 2 : Cho tam giác abc(ab<ac), đường phân giác ad. Qua trung điểm m của bc , kẻ đường thẳng song song với ad , cắt ac và ab theo thứ tự ở e và k .cm
a)ae=ak
b)bk=ce