đầu bài sai phải là -tam giác vuông ABC
đầu bài sai phải là -tam giác vuông ABC
Cho tam giác ABC vuông tại A, đường cao AH
a) Cm ▲BHA đồng dạng ▲BAC. Từ đó suy ra BA2 = BH.BC
b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Cmr CH.CB=CI.CK
c) Tia BK cắt tia HA tại D. Cmr góc BHK= góc BDC
GIÚP MIK NHANH NHANH MIK ĐAG CẦN GẤP:(((
cho tam giác ABC vuông tại A, đường cao AH
a/ chứng minh tam giác AHB đồng dạng tam giác CBA
b/ kẻ phân giác AD của tam giác CHA và đường phân giác BK của tam giác ABC, BK cắt AH và AD lần lượt tại E và F. Chứng minh tam giác AEF đồng dạng tam giác BEH
c/ KD//AH
d/ chứng minh EH/AB=KD/BC
cho tam giác ABC có các đường cao BK và CI cắt nhau tại H.
a) chứng minh AI.AB=AK.AC
b) chứng minh Δ AIK và Δ ACB đồng dạng
c) chứng minh BI.BA+CK.CA=BC2
Cho tam giác ABC vuông tai A (AB<AC) có duong cao AH.
a) Chung minh: tam giác HBA - tam giác HAC-tam giác ABC
b) Chung minh: *AB.AC=AH.BC
*AB2= BH.BC
*AC2= CH.CB
*HA2 =HB.HC
*1/AH2 = 1/AB2 + 1/AC2
c) ke HK vuông góc AB (K thuoc AB ), goi M,N lan luot là trung diem cua AC và HK. Chung minh B;N;M thang hàng.
Cho tam giác (cân tại A) vẽ đường cao AH, đường cao BK
a)Tìm các cặp tam giác vuông đồng dạng ? Giải thích tại sao ?
b) Cho Hãy tính độ dài các cạnh của tam giác ABC
c) Gọi I là giao điểm của và BK, hãy tìm điều kiện của tam giác ABC để tam giác là tam giác đều ?
Cho tam giác ABC nhọn, đường cao AH và BK cắt nau tại I. a) CM: tam giac AKB đồng dạng với tam giác BHA. b) tam giác BKC đồng dạng với tam giác AHC. c) CM: BI . IK = AI . IH. d) CM: ABI đồng dạng HKI. e) tam giác ABC đồng dạng tam giác HKC
cho tam giác abc vuông tại a có ab=9cm ac=12 cm, đường cao ah
a ) cmr tg ABC đồng dạng vs tg HBA
b) kẻ phân giác BM ( M thuộc AC ) cắt AH tại N , tyinhs độ dài AM,CM
c) c/m MH/NA=MA/MC
cho tam giác ABC vuông ở A kẻ đừng cao AH và đường phân giác BD
a) chứng minh tam giác AHB đồng giạng với tam giác ABC
b) tính AD,DC . Biết AB=6 , AC=8
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI