Bài 4. Tính chất đường phân giác của tam giác

H24

Cho tam giác ABC, điểm D thuộc cạnh BC sao cho \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\). Chứng minh AD là tia phân giác của góc BAC.

HM
11 tháng 1 2024 lúc 21:41

Từ B kẻ đường thẳng song song với AC, cắt AD tại K.

Vì \(BK//AC\) nên theo hệ quả của định lý Thales, ta có: \(\frac{{DB}}{{DC}} = \frac{{BK}}{{AC}}\)

Mà \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\) nên \(\frac{{BK}}{{AC}} = \frac{{AB}}{{AC}} \Rightarrow AB = BK\)

Khi đó tam giác ABK cân tại B nên \(\widehat {BAK} = \widehat {BKA}\)

Mà \(BK//AC\) nên \(\widehat {BKA} = \widehat {KAC}\)

\( \Rightarrow \widehat {BAK} = \widehat {KAC}\)

Vậy AD là đường phân giác trong tam giác ABC.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết