Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có các cạnh BC = a, CA = b, AB = c. Gọi r là bán kính đường tròn nội tiếp, S là diện tích tam giác ABC.
a) Chứng minh : \(S=\dfrac{r\left(a+b+c\right)}{2}\)
b) Tính bán kính đường tròn nội tiếp của tam giác ABC. Biết tam giác ABC là tam giác cân có cạnh đáy bằng 16 cm, cạnh bên bằng 10 cm.
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Cho tam giác Abc vuông tại A nội tiếp đường tròn tâm O có AB=7,5 cm, đường cao AH=4,5 cm.Tính R của đường tròn tâm O
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF
a, tính tổng \(^{AE^2}\)+\(^{EF^2}\) theo R
b, Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cảm ơn bạn ạ
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .