Bài tập cuối chương VII

QL

Cho tam giác \(ABC\) có \(BC\) bằng 30cm. Trên đường cao \(AH\) lấy các điểm \(K,I\) sao cho \(AK = KI = IH\). Qua \(I\) và \(K\) vẽ các đường \(EF//BC,MN//BC\left( {E,M \in AB;F,N \in AC} \right)\).

a) Tính độ dài các đoạn thẳng \(MN\) và \(EF\).

b) Tính diện tích tứ giác \(MNFE\) biết rằng diện tích tam giác \(ABC\) là \(10,8d{m^2}\).

KT
13 tháng 9 2023 lúc 22:33

a) Vì \(AK = KI = IH \Rightarrow AK = \frac{1}{3}AH;AI = \frac{2}{3}AH\).

Vì \(EF//BC \Rightarrow EK//BH;MN//BC \Rightarrow MI//BH\)

Xét tam giác \(ABH\) ta có \(EK//BH\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AK}}{{AH}} = \frac{1}{3}\)

Xét tam giác \(ABH\) ta có \(MI//BH\), theo định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{AI}}{{AH}} = \frac{2}{3}\)

Xét tam giác \(ABC\) ta có \(EF//BC\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{EF}}{{BC}} = \frac{1}{3} \Rightarrow \frac{{EF}}{{30}} = \frac{1}{3} \Rightarrow EF = \frac{{30.1}}{3} = 10\)

Xét tam giác \(ABC\) ta có \(MN//BC\), theo hệ quả của định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{2}{3} \Rightarrow \frac{{MN}}{{30}} = \frac{2}{3} \Rightarrow EF = \frac{{30.2}}{3} = 20\)

Vậy \(EF = 10cm;MN = 20cm\).

b) Đổi \(10,8d{m^2} = 1080c{m^2}\)

Diện tích tam giác \(ABC\) là:

\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}AH.30 = 1080\left( {c{m^2}} \right)\)

\( \Rightarrow AH = 1080.2:30 = 72cm\)

Ta có: \(AH \bot BC \Rightarrow AH \bot MN\) (quan hệ từ vuông góc đến song song)

Do đó, \(KI \bot MN\)

Mà \(KI = \frac{1}{3}AH \Rightarrow KI = \frac{1}{3}.72 = 24cm\)

Tứ giác \(MNFE\) có \(MN//EF\) (cùng song song với \(BC\)) nên tứ giác \(MNFE\) là hình thang.

Lại có: \(KI \bot MN \Rightarrow KI\)là đường cao của hình thang.

Diện tích hình thang \(MNFE\) là:

\({S_{MNFE}} = \frac{1}{2}\left( {EF + MN} \right).KI = \frac{1}{2}.\left( {10 + 20} \right).24 = 360\left( {c{m^2}} \right)\)

Vậy diện tích tứ giác \(MNFE\) là \(360c{m^2}\).

Bình luận (0)
NT
13 tháng 9 2023 lúc 22:36

a:

Xét ΔABH có EK//BH

nên EK/BH=AK/AH=1/3

Xét ΔAHB có MI//BH

nên MI/BH=2/3

Xét ΔABC có MN//BC

nên AM/AB=MN/BC

=>MN/30=2/3

=>MN=20(cm)

Xét ΔABC có EF//BC

nên EF/BC=AE/AB=1/3

=>EF=10(cm)

b: S ABC=1/2*AH*BC

=>1/2*AH*30=1080

=>AH=1080/15=72(cm)

KI=1/3*AH=24(cm)

S MNFE=1/2*(EF+MN)*KI=360cm2

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết