a: Xét ΔABM và ΔEBM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔABM=ΔEBM
b: Xét ΔAMF và ΔEMC có
\(\widehat{MAF}=\widehat{MEC}\)
MA=ME
\(\widehat{AMF}=\widehat{EMC}\)
Do đó: ΔAMF=ΔEMC
Suy ra: AF=EC
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔABM và ΔEBM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔABM=ΔEBM
b: Xét ΔAMF và ΔEMC có
\(\widehat{MAF}=\widehat{MEC}\)
MA=ME
\(\widehat{AMF}=\widehat{EMC}\)
Do đó: ΔAMF=ΔEMC
Suy ra: AF=EC
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Cho tam giác ABC vuông tại A có góc B =30° .
a, Tính góc C.
b, vẽ tia phân giác của góc C cắt cạnh AB tại D.
c, trên cạnh CB lấy điểm M sao cho CM=CA . Chứng minh: tam giác ACD = tam giác MCD.
d,qua C vẽ đường thẳng xy vuông góc tại CA . Từ A kẻ đường thẳng song song với CD cắt xy tại J . Chứng minh : AK=CD.
c,tính góc AKC
Cho tam giác ABC vuông tại A có góc B =30° .
a, Tính góc C.
b, vẽ tia phân giác của góc C cắt cạnh AB tại D.
c, trên cạnh CB lấy điểm M sao cho CM=CA . Chứng minh: tam giác ACD = tam giác MCD.
d,qua C vẽ đường thẳng xy vuông góc tại CA . Từ A kẻ đường thẳng song song với CD cắt xy tại J . Chứng minh : AK=CD.
c,tính góc AKC
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm E sao cho AB=AE. Vẽ tia phân giác của góc BAC, tia phân giác này cắt BE tại M và cắt BC tại K.
Chứng minh rằng 2AK<AB+AC+BC
Cho tam giác ABC ( AB = AC ) . Tia phân giác của góc B và C cắt cạnh AC , AB lần lượt ở D và E . Chứng minh rằng :
a) Tam giác AED cân
b) DE // BC
c) DE = BE = DC
Cho tam giác ABC ( AB = AC ) . Tia phân giác của góc B và C cắt cạnh AC , AB lần lượt ở D và E . Chứng minh rằng :
a) Tam giác AED cân
b) DE // BC
c) DE = BE = BC
Giup mk với đag cần gấp...^-^
Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Các đường thẳng vuông góc kẻ từ A và E với CD cắt BC ở G và H. Đường thẳng EH và đường thẳng AB cắt nhau ở M. Đường thẳng kẻ từ A song song với BC cắt MH ở I.
Chứng minh: a, Tam giác ACD= tam giác AME
b, tam giác AGB= tam giác MIA.
c, BG = GH
1.Cho tam giác ABC có AB = AC , M là trung điểm của BC
a Chứng minh : tam giác AMB = tam giác AMC
b. từ M kẻ ME vuông góc AB ( E ϵ AB) , MF vuông góc với AC ( F ϵ AC )
Chứng minh : AE = AF
c, Chứng minh : EF song song BC
d, từ B kẻ đường thẳng vuông góc với AB , Từ C kẻ đường thẳng vuông góc với AC . Hai đường thẳng này cắt nhau tại N
Chứng minh : A, M ,N thẳng hàng
Cho tam giác nhọn ABC, M là trung điểm của BC. Đường vuông góc với AB tại B cắt đường thẳng AM tại D. Trên tia MA lấy điểm E sao cho ME = MD. chứng minh rằng CE vuông góc với AB
Cho tam giác nhọn ABC, M là trung điểm của BC. Đường vuông góc với AB tại B cắt đường thẳng AM tại D. Trên tia MA lấy điểm E sao cho ME = MD. chứng minh rằng CE vuông góc với AB