Hình học lớp 7

PP

Cho tam giác ABC ( AB = AC ) . Tia phân giác của góc B và C cắt cạnh AC , AB lần lượt ở D và E . Chứng minh rằng :

a) Tam giác AED cân

b) DE // BC

c) DE = BE = DC

KS
7 tháng 2 2017 lúc 18:33

A B C E D 1 2 2 1

a, \(\Delta\) ABC có AB = AC => \(\Delta\) ABC cân tại A

ta có \(\widehat{B1}=\widehat{B2}=\frac{\widehat{B}}{2}\) ; \(\widehat{C1}=\widehat{C2}=\frac{\widehat{C}}{2}\)

\(\widehat{B}=\widehat{C}\) ( \(\Delta\) ABC cân tại A )

=> \(\widehat{B1}=\widehat{B2}=\widehat{C1}=\widehat{C2}\)

xét \(\Delta\) EBC và \(\Delta\) DCB có

BC chung

\(\widehat{B}=\widehat{C}\) ( \(\Delta\) ABC cân tại A )

\(\widehat{B2}=\widehat{C2}\) (cmt )

=> \(\Delta\) EBC = \(\Delta\) DCB ( g.c.g )

ta có AE + EB = AB

AD + DC = AC

mà EB = DC ( \(\Delta\) EBC = \(\Delta\) DCB ) ; AB = AC

=> AE = AD =>\(\Delta\) AED cân tại A

b, ta có \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)

\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)

=> \(\widehat{D}=\widehat{C}\) mà 2 góc này ở vị trí đồng vị

=> DE // BC

c,DE // BC , \(\widehat{DEC}và\widehat{ECB}\) so le trong

=> \(\widehat{DEC}=\widehat{C2}\)\(\widehat{C2}=\widehat{C1}\)

=> \(\widehat{DEC}=\widehat{C1}\) => \(\Delta\) DEC cân tại D

=> DE = DC

ta có BE = DC ( \(\Delta\) EBC = \(\Delta\) DCB )

=> DE = BE = DC

haha

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
HK
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
NM
Xem chi tiết
NL
Xem chi tiết