Cho tam giác ABC vuông tại A có góc B =30° .
a, Tính góc C.
b, vẽ tia phân giác của góc C cắt cạnh AB tại D.
c, trên cạnh CB lấy điểm M sao cho CM=CA . Chứng minh: tam giác ACD = tam giác MCD.
d,qua C vẽ đường thẳng xy vuông góc tại CA . Từ A kẻ đường thẳng song song với CD cắt xy tại J . Chứng minh : AK=CD.
c,tính góc AKC
a: \(\widehat{C}=90^0-30^0=60^0\)
c: Xét ΔCAD và ΔCMD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔCAD=ΔCMD