Bài 1: Quan hệ giữa góc và cạnh đối diện trong một tam giác

NN

Cho tam giác ABC có AC>AB. Gọi M là trung điểm của BC. So sánh:
a) góc B và góc C
b) góc MAB và góc MAC
c) góc AMB và góc AMC

NT
17 tháng 1 2024 lúc 13:11

a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC

nên \(\widehat{ACB}< \widehat{ABC}\)

b: Trên tia đối của tia MA, lấy D sao cho MA=MD

Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>AC=BD 

Ta có: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

=>\(\widehat{MAC}=\widehat{ADB}\)(1)

Ta có: AC=BD

AC>AB

Do đó: BD>AB

Xét ΔBAD có BD>BA

mà góc BAD,góc BDA lần lượt là góc đối diện của các cạnh BD,BA

nên \(\widehat{BAD}>\widehat{ADB}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{MAB}>\widehat{MAC}\)

 

Bình luận (0)

Các câu hỏi tương tự
2T
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
OL
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết